STRING THEORY

String is thought to be the earliest manufactured thread and has been described as the unseen weapon that allowed the human race to conquer the earth.  String can be used for carrying, holding, tying and trapping, securing and decoration.  Textiles underlie the great prints and canvases of Western Art and form a surface to write upon. Paper nowadays is largely made of wood pulp but is still made in the traditional manner with the fibres from plants in specialist paper mills; these fibres are pulped and bleached, washed and dried and then filtered onto a mesh and compressed onto a fine felt. 

 Sophisticated textile production dates to six thousand years B. C., in southern regions of Europe, and four thousand B.C. Egyptian women were weaving linen on horizontal looms.  Archaeologists have unearthed fabric and rope fragments that date as far back as twelve thousand years in the past, making them the oldest known textiles in South America.  In China, where the spinning wheel is thought to have first turned, sophisticated drawlooms had woven designs that used thousands of different warps.  These prehistoric weavers seem to have produced cloths of extraordinary complexity, woven with ornate designs far in excess of the simple need to cover and protect bodies or to provide warmth and comfort for their dwelling places.

ancient-greek-fabric-attica

The production of ‘homespun’ yarn and cloth was one of the first cottage industries, pin money was women’s earliest source of independent cash and women were selling surplus yarn and cloth, working as small-scale entrepreneurs, long before the emergence of factories or the mechanisms which now define the textile industry.

There were other spin offs from textiles too.  The weaving of complex designs demanded far more than one pair of hands, and textiles production tends to be communal, sociable work allowing plenty of occasion for gossip and chat.  Weaving was already multimedia:  singing, chanting, telling stories, dancing, and playing games whilst they worked; these spinsters, weavers and needlewomen were literally networkers as well, spinning yarns, fabricating fiction and fashioning fashion.  The textures of woven cloth functioned as a means of communication and information storage too, long before anything was written down. 

Weaving is often used to mark or announcer information and a mnemonic device to record events and other data.  Textiles do communicate in terms of the images which appear on the right side of the cloth, but this is only the most superficial sense in which they process and store data.  Because there is no difference between the process of weaving and the woven design.  Cloth persists as records of the process which fed into their production; how many women worked on them, the techniques they used and the skills they employed.  The visible pattern is integral to the process which produced it, the programme and the pattern are continuous. 

lozenge-shaped-blk-wht-fabric

The lozenge motif dates as far back as the Neolithic and Paleolithic period and is tied to human fertility and land. The binary male and female principles serve as the basis for deciphering the meaning of this symbol. It consists of two triangles. But in the pre-Ukrainian period, it was believed that the woman held the three corners of the lozenge (the three corners of the home), while the man held the fourth, which completed the integrity of the family. A lozenge with a dot in the middle symbolizes a sown field, which meant abundance and prosperity.  In addition to simple lozenges, we often see rhombuses with hooks (tiny horns) in Ukrainian embroidery. This design is called “zhaba” (frog) and symbolizes fertility. In ancient beliefs, this little creature was linked to heavenly moisture that gives life.

Lozenge-shaped patterns were embroidered on wedding towels and bridal gowns. Pregnant woman wore shirts covered with diamond patterns until childbirth as this symbol served as a powerful talisman.   

As the frantic activities of generations of spinsters and weaving women make clear, nothing stops when a piece of work has been finished off.  Even when magical connections are not explicitly invoked, the finished cloth – unlike the painting or the text, is almost incidental in relation to the process of its production.  The only incentive to cast off seems to be the chance it provides to start again, throw another shuttle and cast another spell. 

 

 

 

Advertisements

JOBS FOR THE GIRLS

The development of computer software is a history strongly represented by women who have played significant rôles in its development. Ada Lovelace is the best known and Grace Hopper is also becoming a legend among the cognoscenti.   Less heralded by history was a group of six women who worked in wartime secrecy at the University of Pennsylvania, where John Mauchly and Presper Eckert led a team that was building ENIAC, the world’s first programmable, all-electronic, general-purpose computer.

 As ENIAC was being constructed at Penn in 1945, it was thought that it would perform a specific set of calculations over and over, such as determining a missile’s trajectory using different variables. But the end of the war meant that the machine was needed for many other types of calculations—sonic waves, weather patterns, and the explosive power of atom bombs—that would require it to be reprogrammed often.

This entailed switching around by hand ENIAC’s rat’s nest of cables and resetting its switches. At first the programming seemed to be a routine, perhaps even menial task, which may have been why it was relegated to women, who back then were not encouraged to become engineers. But what the women of ENIAC soon showed, and the men later came to understand, was that the programming of a computer could be just as significant as the design of its hardware.

The tale of Jean Jennings is illustrative of the early women computer programmers. She was born on a farm on the outskirts of Alanthus Grove, Maryville, into a family that had almost no money but deeply valued education. When Jean finished college in January 1945, her calculus teacher showed her a flier soliciting women mathematicians to work at the University of Pennsylvania, where women were working as “computers”—humans who performed routine maths tasks. 

One of the ads read:

Wanted: Women with Degrees in Mathematics…Women are being offered scientific and engineering jobs where formerly men were preferred. Now is the time to consider your job in science and engineering…You will find that the slogan there as elsewhere is ‘Women Wanted’.

 When Jennings started work at Penn in March 1945 there were approximately seventy other women at Pennsylvania working on desktop adding machines and scribbling numbers on huge sheets of paper.  A few months after she arrived, a memo was circulated among the women advertising six job openings to work on the mysterious machine that was behind locked doors on the first floor of Penn’s Moore School of Engineering, the ENIAC. She had no idea what the job was or what the ENIAC was, all she hoped was that she might be getting in on the ground floor of something new.  She believed in herself and wanted to do something more exciting than calculating trajectories.

When Jean Jennings got that job she was set to work together with Marlyn Wescoff, Ruth Lichterman, Betty Snyder, Frances Bilas, and Kay McNulty to figure out how the machine worked and then how to programme it.   They made careful diagrams and charts for each new configuration of cables and switches. What they were doing then was the beginning of a programme, though they did not yet have that word for it.

Around the same time that Grace Hopper was doing so at Harvard, the women of ENIAC were developing the use of subroutines. Because it was being used for atom bomb calculations and other classified tasks, ENIAC was kept secret until February 1946, when the Army and Penn scheduled a gala unveiling for the public and the press.  At the demonstration, ENIAC was able to spew out in 15 seconds a set of missile trajectory calculations that would have taken human computers several weeks. The women had programmed the ENIAC.  The unveiling of ENIAC made the front page of the New York Times under the headline ELECTRONIC COMPUTER FLASHES ANSWERS, MAY SPEED ENGINEERING.

Later Jennings complained, in the tradition of Ada Lovelace, that many of the newspaper reports overstated what ENIAC could do by calling it a giant brain and implying that it could think. The ENIAC wasn’t a brain in any sense, it couldn’t reason, as computers still cannot reason, but it could give people more data to use in reasoning.

That night there was a candlelit dinner at Pennsylvania’s venerable Houston Hall. It was filled with scientific luminaries, military brass, and most of the men who had worked on ENIAC. But Jean Jennings and Betty Snyder  were not there, nor were any of the other women programmers.

Shortly before she died in 2011, Jean Jennings reflected proudly on the fact that all the programmers who created the first general-purpose computer were women. It happened because a lot of women back then had studied maths, and their skills were in demand, she explained. There was also an irony involved, the boys with their toys thought that assembling the hardware was the most important task, and thus a man’s job. If the ENIAC’s administrators had known how crucial programming would be to the functioning of the electronic computer and how complex it would prove to be, they might have been more hesitant about giving such an important role to women.

QUEEN OF CODES

Ever since the days of Charles Babbage the engineering of computer hardware has been dominated by men. The pioneers of software, however, were often women, beginning with Babbage’s friend and muse Ada, Countess of Lovelace. 

A century later, when the first electronic computers were being invented, the men were still focusing on the hardware, and many women followed in Ada’s footsteps. You probably don’t know the name Grace Hopper, but she should be a household name.  As a rear admiral in the U.S. Navy, Hopper worked on the first computer, the Harvard Mark I and she headed the team that created the first compiler, which led to the creation of COBOL, a programming language that by the year 2000 accounted for 70 percent of all actively used code. Passing away in 1992, she left behind an inimitable legacy as a brilliant programmer and pioneering woman in male-dominated fields. 

Grace was curious as a child, a lifelong trait; at the age of seven she decided to determine how an alarm clock worked, and dismantled seven alarm clocks before her mother realized what she was doing (she was then limited to one clock.  She graduated from Vassar in 1928 with a bachelor’s degree in mathematics and physics and earned her master’s degree at Yale University in 1930.  In 1934, she earned a Ph.D. in mathematics from Yale and her thesis, New Types of Irreducibility Criteria, was published that same year. Hopper began teaching mathematics at Vassar in 1931, and was promoted to associate professor in 1941. 

Grace was enigmatic, disruptive and ahead of her times.  On December 7th 1941 after Pear Harbour was bombed by the Japanese in the Second World War she joined the navy.  As a former Maths lecturer she was put to work on the Harvard Mark I, the 51 foot maths calculating machine.  She loved machines and considered the Mark I a beautiful machine.  She was good at making machines work.  Not interested in the parts of a computer that “you could kick” she was fascinated by what later came to be called Programming. The input system used in the Mark I was paper tape, a system in which you could physically punch your code out in the tape that was fed into the machine. 

Grace Hopper helped find a way in which a ball could be made to collapse in on itself, this was called the implosion problem and the solution to this problem ultimately created the nuclear bomb which was later dropped on Hiroshima in Japan.  

After the war she became Head of the Software Division for Eckert and Mauchly Comp, where as Head of the Software Division she popularized the idea of machine-independent programming languages, which led to the development of COBOL, one of the first high-level programming languages. She is credited with popularizing the term ‘debugging’” for fixing computer glitches, inspired by an actual moth removed from the computer. 

Grace Hopper worked in the male dominated world of computers all her life and had no truck with people who called her a Trail Blazer.  She didn’t admit that any trail needed to be blazed saying that if you work hard and are capable then recognition would follow.  It must have amused her when she was voted Computer Man of the Year. 

Always an independent thinker she hated the expression “But we’ve always done it that way” and visitors to her office would be perplexed and fascinated in equal measure by a clock on her wall that went backwards, “there is no reason why a clock should work one way or another” she would reason.  Grace Hopper has been described as appearing to be “‘all Navy’, but when you reach inside you find a ‘Pirate’ dying to be released” and it may be this reason that a Jolly Roger flag was always flying in her office or to highlight her ability to release information from the most  secure hideouts. 

In 2014 eight thousand people attended the Grace Hopper Celebration of Women in Computing, and it was the world’s largest gathering of women technologists.  The George R. Brown Convention Centre, Houston Texas is the location for the 2015 Celebration and will be held from October 14th – 16th with more people expected to attend than ever before, her name may soon be recognised in ever more households.